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QUALITATIVE ANALYSIS OF SYSTEMS WITH AN IDEAL NON-CONSERVATIVE CONSTRAINT* 

A.P. MARKEYEV 

The Hamiltonian form developed in /l/ for the equations of motion of 
systems with ideal non-conservative constraints enables familiar methods 
of classical and celestial mechanics to be used to analyse the dynamics 
of such systems. When this is done certain difficulties arise, due to 
the fact that the Hamiltonian is not analytic. In this paper one of the 
possible algorithms applying KAM theory /2/ and Poincar&'s theory of 
periodic motions /3/ to the analysis of systems in which the Hamiltonian 
is non-analytic in one of the phase variables is described. As an 
example, some results of /4/ concerning the dynamics of a rigid body 
colliding with a fixed, absolutely smooth, horizontal plane are refined. 

1. Consider the motion of a nearly integrable Hamiltonian system with Hamiltonian 

H=H,(x,, x,7 x,)+ @,(x*7 529 539 Yl7 Y,? Y37 p) (O<I.L<l) (1.1) 

The function (1.1) is Zn-periodic in the coordinates y, (i = 1,2,3), analytic in p* X17 51. % 
Yl? Y!z, but only continuous with respect to y,. 

At p =0 we have 
Xi = Xio, yi = Uit + yi, (i = 1, 2, 3) (1.2) 

The zero subscript denotes the initial value of the relevant variable; the frequencies oi are 
equal to the derivatives H-IO18X~, evaluated at XJ = Xjo (j = 1, 2, 3). 

Let us assume that the unperturbed motion (1.21 is conditionally periodic. Using 
Kolmogorov's theorem on conservation of motion /5, 61, one can show that if H, satisfies 
certain restrictions, then, for sufficiently small p and most initial values, the variables xi 
will deviate only slightly (as long as N is small) from thgir initial values for all t. Since 
the function (1.1) is not analytic, Kolmogorov's theorem cannot be applied directly, but one 
can use a version of the theorem adapted to symplectic maps /2, 7/. 

To that end we introduce the variables Pi, where Xi = xi,, + pi (i = 1, 2, 3). At the iso- 
energetic level, 

H =i H, (x,,, xzO, xQO) + yh (h = const, h N 1) (1.3) 

the motion can be described in terms of Whittaker's equations /8/. These equations are in 
Hamiltonian form with Hamiltonian K, where pa = -K is a root of Eq.tl.3). The function K 
has the form 

k' = & (PI, ~2) + SKI (~1, ~2, Y,, Y,, Y,, I”, h) (1.4) 

where K,, may be expressed as a series that converges for sufficiently small PI? Pz: 

&I = @s-l (OIP, + %Pz) -t ‘i,Q (%P,2 + 2$,P,P, + U&2) + . . (1.5) 
aii = Ho, ii 01' - 2H,,ismimz + H,,,,oi* (i = 1, 2) 

a 12 = H,,,,o,w, -t H~,,,Q' - H,,l,ozo, - Ho,zsmzo, 
(Ho, ik = aZH,/axi6Xk) 

The derivatives in (1.5) are evaluated at xi= xi,,. The function K, in (1.4) is 2n- 
periodic in Yi (i = 1, 2, 3), analytic in CL, Pi, yi (i = 1,2) and continuous in y,. 

Let pi’, yi’ and pi”, yi” 
respectively. 

be the values of pi, yi (i = i,Yi?) at y, = 0 and 
By integration of the Whittaker equations 

Y, = 2n, 

dYiidY, = aKlap,, dp,ldy, = -4Klayi (i = 1, 2) 

using series in powers of p, we obtain a symplectic map p,‘, yi’+pi’,y[. 
in terms of a generating function 

This map is defined 

S (Pl”, Pz’r Yl’, Y,‘, pv h) = so + lL& (1.6) 

So = (yl’ -t Bno,o,-')p," + (yz' + 2no,03e1)p," + S,* + S,* + . . . 

VrikZ.Matem.Mekhan.,53,6,867-872.1989 
685 



686 

(S, is a function analytic in the neighbourhood of the point pl’ = ps”= 0, and s,* is a form 
of degree k in pl”, pew). 

If the condition 

holds when pl’ = pa” = 0 then the map pi’, yi’ + p:, yi” is said to be non-degenerate. Assume 
that the non-degeneracy condition (1.7) is satisfied. Then 12, 71 the map has two-dimensional 
invariant tori close to the "torus" pl’ = pa‘ = 0 of the unperturbed (i.e., at p = 0) map; 
furthermore, the measure of the complement to the union of these tori is small together with 

p. Hence, and by the equality ps=---K, it follows that than the variables x,,q,s, differ 
only slightly from their initial values for most initial conditions and all t. 

Performing some relatively easy algebra in (1.5)-(1.71, we can show that 6 = -4no,-8A, 
where 

H 0.11 &a H~,u 01 

Ho.n Horn Ho.as 02 
‘=H H 0.1s o,as Hws 03 (W 

01 % 03 0 

i.e., the map pi’, yi’ + pin, yi” (i = 1,2) is non-degenerate if and only if the function H, is 
isoenergetically non-degenerate. 

2. Consider a system with two degrees of freedom. The Hamiltonian 

H = Ho (~1, G) + pH, (~1, 31, Y,, ~a, P) (0 < P < 1) (2.1) 

is Zn-periodic in y,,y,, analytic in p, zlr x,, y,, but only continuous in yp. Setting z, = 
ziO + pi (i = 1, 2) and solving the equation H = Ho(xlO, x2,)+ ph for pz=-K, we arrive, as in 
Sect.1, at Whittaker's equations 

dylfdyB = aKlap,, dplldye = -aKlay, (2.2) 

where K = K(p1, yl, y,, p,h) is Zn-periodic in Yl, Y,, analytic in p, pl, yl, and its expansion 
in powers of p is 

K = KJ (~1) + PK~ (~1, ~1, Y,, h) + . . . (2.3) 

Here K. (PJ is a root of the equation Ho (xl0 + pl, xz,, - K,) = H, (xlo, x,&, 

K, = b,p, + b,p,’ + bap1’ + . . . (2.4) 
b, = w10~-~, b, = l/z%-’ (Ho,,A~ - 2Ho,l,olo, + H,,,,o,=) 

b, = l/sG (Hw~,@, - ~Ho,,,,~,G= + 3H,,,,,a,Sw, - 
H o,z~~~l*) + b,%-’ (Ho,sz% - &,l~~J~ us = aH&% (i = 1, 2) 

Hosiik = bH,lax,ax,ax, 

and the derivatives are evaluated at xi = xiO. 
The function K1 has the form 

K, = -(aH,IaxJ’(H, (~1, 51, Y,, Y,, 0) + h) 

where the right-hand side is evaluated at xl = x1,, + pl, xp = xsa - K,. 
Eqs.(2.2) determine a symplectic map pl’,yl’+ pzm,y,“, 

~1” = Y,’ + Y (~1’) t of (Al’, YI’, IL? h) 

~1” = ~1’ + cLg (pl’t ~1’7 II, h) 

(2.5) 

(2.6) 

where pl’, yl’ and Pl"? Yl" are the values of ~1, yl at y, = 0 and Y, = 2n, respectively, 
the functions f and g are analytic in all their arguments, y = 2naK, (pl’)/apl’. 

The map (2.6) is area preserving. If at least one of the coefficients b, (n = 2, 3, . . .) 
of the expansion (2.4) does not vanish, then for sufficiently small u (2.6) is a twisting map 
and Moser's Invariant Curve Theorem /9/ is applicable. It follows from that theorem and the 
equality pe = -K that, for sufficiently small ~1 and any initial conditions, the variables 

Ill G will differ only slightly from their initial values for all t. 

3. If the ratio of the frequencies 01/02 of the unperturbed system (p = 0) with 
Hamiltonian (2.1) is a rational number m/n, then its motion 
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to zero - this involves 
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21 = 510, 9 = Go, 111 = w,t + h, Ya = %t (3.1) 

To = 2nn~o,-~ = 2~wm~-~. In (3.1) k = 810 and we have taken ylo equal 
no loss of generality, since %#O and the system is autonomous. 
is small but not zero. The problem of the existence and stability of 
system with Hamiltonian (2.1) not analytic in ya can be solved by 

using the isoenergetic reduction of the equations governing the original system to Whittaker's 
Eqs.(2.2). System (2.21, in turn, can be tackled by means of Poincard's algorithm for investi- 
gating periodic solutions (see /lo/). Using this algorithm it can be shown that the system 
has a solution which is %cn-periodic with respect to y,: p1 = p1 (yp, p), y, = y1 (ys, CL). This 
solution is analytic in p and reduces when p = 0 to the solution 

p1 = 0, y1 = (ml4 ya + A 

The functions 

PI = PI (ym PL yl = Y, (~2, t4 PS = --K 

define a closed curve in the space of pl, pz, y,, with yB treated as 
law of motion along the curve is determined by one of the equations 

dy&t = auaz, 

(3.2) 

the curve parameter. The 
of the original system 

Substituting the function (3.2) into the right-hand side, we obtain 

dY*ldt = 01 + @ (Ye, p, h) (3.3) 

where F is a 2nn-periodic function of y,, analytic in p. Eq.(3.3) determines the time-depen- 
dence of y,. It implies that the solution of the original equation corresponding to a solution 
of the reduced system which is .%cn-periodic in y, is a T,,-periodic function of t. The 
period 

(3.4) 

is analytic with respect to p and when p = 0 it equals the period To of the unperturbed 
motion (3.1). 

The algorithm of /lo/ also yields conditions for periodic solutions of the reduced system 
to be stable in Lyapunov's sense. As applied to the original system, these conditions imply 
orbital stability of the T,,-periodic solution. 

Using results from /lo/, one can prove the following assertion about periodic motions in 
systems with Hamiltonian (2.1). 

Theorem. Let p be sufficiently small and let <H,> be the mean value of the function 
H* (Zll =zLh, Y1r Yrrr 0) over the unperturbed motion (3.11, i.e., 

(H,) -- + ST’ H, (XIO, ic*o1 w,t + a, ++t, 0) dt 
0 

Assume that the following conditions hold: 1) at xl= xl,, x, = xso the function Ho is 
isoenergetically non-degenerate, i.e., the coefficient b, in (2.4) does not vanish; 2) there 
exists h, such that at h = h, 

a (Hl)/8h = 0, 13~ < H,)W? # 0. 

Then the system with Hamiltonian (2.1) has a T,-periodic solution which is an analytic func- 
tion of p and reduces at p = 0 to a T,.-periodic solution (3.1) of the unperturbed system 

51 = 510, x2 = Go, y, = w,t t h,, Y/z .= w,t 

If 

b,P <H,)lah2 Ii+ > 0 

this periodic motion is unstable, and if also 

then it is orbitally stable. 

4. As an example, let us consider the motion of a rigid body performing collisions with 
a fixed, absolutely smooth, horizontal plane. We have already considered this problem /4/, 
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but since the function (7.2) in./4/ is not analytic in W, the procedure used there to derive 
qualitative conclusions about the motion of the body needs improvement. We shall assume that 
the surface of the body is defined by an analytic function and differs only slightly (together 
with the small parameter u) from a sphere of radius R centred at the centre of gravity of the 
body. The central ellipsoid of inertia is arbitrary. 

The projection I, of the kinetic momentum of the body on the vertical is an integral, 
which we proceed to scale to the parameters of the problem. In the notation of /4/, the 
Hamiltonian can be written as 

Here H,(l) is the Hamiltonian for the motion of the body in the Euler-Poinsot case, II 
is the kinetic momentum, m is the mass of the body, and g is the acceleration due to gravity. 
The quantity I is related to the height h to which the body rebounds from the plane in the 
unperturbed motion (P=O) by the equality 

I = "l,n-'m (2gh~)“s 

In the unperturbed motion Ii= I;, (i= 1,2), I= I,. We shall assume that 10 #Q (i.e., in 
the unperturbed motion the rebound height of the body is not zero), and the motion of the body 
relative to its centre of mass is conditionally periodic. The Hamiltonian (4.1) is Zn-periodic 
with respect to II',, W,, W and in a small neighbourhood of the unperturbed motion it is 
analytic in I,, ]*,I, W,, lV2; it is only continuous with respect to W. 

We will now verify that Ho is isoenergetically non-degenerate. Evaluating the determi- 
nant (1.8), we get 

(4.3) 

Relying on computations from /ll/,Chap. 2/, one can show that 0,=2/l,,%,. Using the 

expression for w in (4.4), we obtain 

A = 0~6, (H,,(‘)/(mgh) - 1) (4.5) 

It was shown in /ll/ that Si#O. Therefore, A may vanish only when mgh= Ho(‘), i.e., 
A +90, and the condition for the isoenergetic non-degeneracy of H, is satisfied. Consequently, 
as seen in Sect.1, for sufficiently small u and most initial conditions the quantities 11, II, I 
in the perturbed motion of the body remain close to their initial values for all t. 

Suppose now that the body is dynamically and geometrically symmetric. Then the projection 
of the kinetic momentum on the axis of symmetry is an integral; it can be scaled to the 
parameters of the problem and investigation of the motion reduces /4/ to considering a system 
with two degrees of freedom: 

H = 11, + @3, fi,, I, Wo, W) + . . . (4.6) 
Ho = ‘l,I$lA + ( 9mn~gV32)Y*IYa (A = V6mR’) 

The algorithm of Sect.2 can now be applied to the system with Hamiltonian (4.6). By (2.4), 
the coefficient b, is given by 

Thus b2 can vanish only when mgh=‘l,12’/A. But if b,= 0, then 

Consequently, by Sect.2, for sufficiently small v and any initial conditions the quantities 
Is, 1 in the perturbed motion will remain close to their initial values for all t. 

In /4/ we considered periodic motions of a homogeneous ellipsoid of revolution, almost a 
sphere, colliding with a fixed absolutely smooth horizontal plane. In accordance with Sect.3, 
the discussion in /4/ should be augmented by adding the conditions: mgh =/= =lJs=lA and the 
period is an analytic function of p whose value at p=O is x = 2nw-I= 2nAIl' k (k = 1, 2. . .), 
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The existence and stability conditions for periodic solutions need no modification. 
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ORBITAL STABILITY ANALYSIS USING FIRST INTEGRALS* 

A.Z. BRYUN 

A method is proposed for investigating the oribtal stability of periodic 
solutions of normal systems of ordinary differential equations. The 
Lyapunov function is derived from the first integrals of the equations 
of the perturbed motion and the scalar product of the velocity of motion 
along the orbit and the perturbation vector. Lypunov's second method 
was first used in connection with orbital stability in order to study 
the phase trajectories of systems with two degrees of freedom /I/. 

1. &mstrW?ticWr Of the LyapwwV function. Let s2C R"+' be a domain containing the 
orbit /2/ of a T-periodic solution 

Y = d, (t) (1.4) 

of the autonomous system 

y' = F(Y) (1.2) 
We shall investigate the orbital stability of (1.1) under the assumption that F E Us) (9; 

R"+l). 
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